linVarReg
performs multivariate mean and multivariate variance regression. This function is
designed to be used by the semiVarReg
function.
Arguments
- dat
Dataframe containing outcome and covariate data. Outcome data must be in the first column. Covariates for mean and variance model in next columns.
- var.ind
Vector containing the column numbers of the data in 'dat' to be fit as covariates in the variance model. FALSE indicates constant variance option.
- mean.ind
Vector containing the column numbers of the data in 'dat' to be fit as covariates in the mean model. 0 indicates constant mean option. NULL indicates zero mean option.
- para.space
Parameter space to search for variance parameter estimates. "positive" means only search positive parameter space, "negative" means search only negative parameter space and "all" means search all.
- control
List of control parameters. See
VarReg.control
.- ...
arguments to be used to form the default control argument if it is not supplied directly
Value
linVarReg
returns a list of output including:
converged
: Logical argument indicating if convergence occurred.iterations
: Total iterations performed of the EM algorithm.reldiff
: the positive convergence tolerance that occured at the final iteration.loglik
: Numeric variable of the maximised log-likelihood.boundary
: Logical argument indicating if estimates are on the boundary.aic.c
: Akaike information criterion corrected for small samplesaic
: Akaike information criterionbic
: Bayesian information criterionhqc
: Hannan-Quinn information criterionmean.ind
: Vector of integer(s) indicating the column number(s) in the dataframedata
that were fit in the mean model.mean
: Vector of the maximum likelihood estimates of the mean parameters.var.ind
: Vector of integer(s) indicating the column(s) in the dataframedata
that were fit in the variance model.variance
: Vector of the maximum likelihood estimates of the variance parameters.cens.ind
: Integer indicating the column in the dataframedata
that corresponds to the censoring indicator. Always NULL.data
: Dataframe containing the variables included in the model.